

The 11th World Congress on CONTROVERSIES IN MULTIPLE MYELOMA (COMy)

INTRODUCTION

- Patients with multiple myeloma (MM) have increased risk of infection¹
- Infection risk factors include immune dysregulation due to MM, and for patients receiving chimeric antigen receptor (CAR)-T therapy, lymphodepletion (LD), toxicity management with corticosteroids, and immune suppression exerted by CAR-T cells^{1,2}
- Ciltacabtagene autoleucel (cilta-cel) is approved in the US and EU for treatment of lenalidomide-refractory MM after ≥1 prior line of therapy (LOT) based on the phase 3 CARTITUDE-4 trial³⁻⁵
- At 15.9-month median follow-up, cilta-cel vs standard of care (SOC) improved progression-free survival (PFS) (hazard ratio, 0.26 [protocolspecified weighted analysis], P<0.001)⁵

Infections and Immune Reconstitution in the Phase 3 CARTITUDE-4 Trial of Ciltacabtagene Autoleucel vs Standard Care in Patients With Lenalidomide-Refractory Multiple Myeloma and 1–3 Prior Lines

Joaquín Martínez-López¹, Niels WCJ van de Donk², Binod Dhakal³, Magdalena Dutka⁴, Leyla Shune⁵, Cyrille Touzeau⁶, Xavier Leleu⁷, Yaël C Cohen⁸, Winfried Alsdorf⁹, Roberto Mina¹⁰, Katherine Li¹¹, Man Zhao¹², Quanlin Li¹³, Arnab Ghosh¹⁴, Martin Vogel¹⁵, Nikoletta Lendvai¹⁴, Ana Slaughter¹⁶, Carolina Lonardi¹⁷, Vicki Plaks¹¹, Mythili Koneru¹⁸, Nitin Patel¹⁸, Erika Florendo¹⁸, Albert Oriol¹⁹, Rakesh Popat²⁰, P Joy Ho²¹

¹Hospital 12 de Octubre, Universidad Complutense, CNIO, MIC, Madrid, Spain; ²Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ³Medical College of Wisconsin, Milwaukee, WI, USA; ⁴Medical University of Gdańsk, Gdańsk, Poland; ⁵The University of Kansas Medical Center, Kansas City, KS, USA; ⁶Centre Hospitalier Universitaire de Nantes, Nantes, France; ⁷CHU Poitiers, Poitiers, France; ⁸Tel Aviv Sourasky (Ichilov) Medical Center, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel; ⁹University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹⁰AOU Città della Salute e della Scienza di Torino, Turin, Italy; ¹¹Johnson & Johnson, Spring House, PA, USA; ¹²IQVIA, Shanghai, China; ¹³Johnson & Johnson, Apex, NC, USA; ¹⁴Johnson & Johnson, Raritan, NJ, USA; ¹⁵Johnson & Johnson, Neuss, Germany; ¹⁶Johnson & Johnson, Zug, Switzerland; ¹⁷Johnson & Johnson, Buenos Aires, Argentina; ¹⁸Legend Biotech USA Inc., Somerset, NJ, USA; ¹⁹Institut Català d'Oncologia and Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ²⁰University College London Hospitals NHS Foundation Trust, London, UK; ²¹Royal Prince Alfred Hospital, Camperdown, NSW, Australia

METHODS

- Treatment-emergent (TE) adverse events (AEs) were:
 - AEs at/after first dose of study treatment until ≤112 days after cilta-cel,
 ≤30 days after last PVd/DPd dose (SOC arm), or subsequent anti-MM therapy start, whichever was first
 - Any study treatment-related AE regardless of start date (ie, AEs beginning later than 112 days after infusion)
 - In addition, in the cilta-cel arm, delayed AE reporting collected all grade ≥3 infections from the time of infusion and for the duration of the study regardless of causality or seriousness
- Lymphocyte counts over time were assessed by flow cytometry in patients who received cilta-cel as study treatment

- We characterize infections and immune reconstitution in CARTITUDE-4 after 21.5-month median follow-up
- Infections were assessed in all patients who received any part of study who received any part of study who received any part of study Serur
 - Serum antibody levels were determined by immunoturbidimetry (Labcorp)

RESULTS

Eligibility criteria included lenalidomide-refractory MM and 1–3 prior LOT,

including a proteasome inhibitor (PI) and immunomodulatory drug (IMiD)

pomalidomide, and dexamethasone [DPd] or pomalidomide, bortezomib,

• Patients in the cilta-cel arm underwent apheresis, received bridging therapy,

and then a single cilta-cel infusion (target dose, 0.75 × 10⁶ CAR+ viable

• Patients were randomized 1:1 to cilta-cel or SOC (daratumumab,

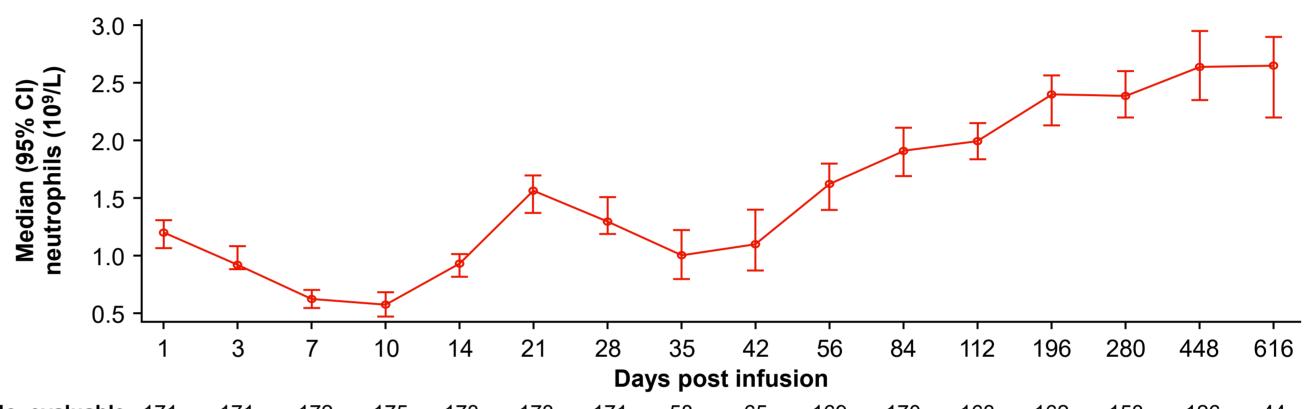
• Patients in the SOC arm received DPd or PVd until progression

and dexamethasone [PVd])

T cells/kg) 5–7 days after LD

Patients

- 208 patients were randomized to cilta-cel and 211 to SOC; baseline characteristics are shown in the Table
- At the April 2023 data cut-off, median follow-up was 21.5 months (range, 0.1–32.8)


Table: Baseline characteristics

Baseline characteristic	ITT population	
	Cilta-cel (n=208)	SOC (n=211)
Age, median (range), years	61.5 (27–78)	61.0 (35–80)
ISS stage, n (%)		
I	136 (65.4)	132 (62.6)
II	60 (28.8)	65 (30.8)
	12 (5.8)	14 (6.6)
Bone marrow plasma cells ≥60%,ª n (%)	42 (20.4)	43 (20.7)
Presence of soft tissue plasmacytomas, ^b n (%)	44 (21.2)	35 (16.6)
Years since diagnosis, median (range)	3.0 (0.3–18.1)	3.4 (0.4–22.1)
Prior LOT, median (range)	2 (1–3)	2 (1–3)
1 prior LOT, n (%)	68 (32.7)	68 (32.2)
2 or 3 prior LOT, n (%)	140 (67.3)	143 (67.8)
Triple-class ^c exposed, n (%)	55 (26.1)	53 (25.5)
Penta-drug ^d exposed, n (%)	10 (4.7)	14 (6.7)
MM type, n (%)		
IgG	113 (54.3)	108 (51.2)
IgA/IgM	37 (17.8)	38 (18.0)
Light chain	47 (22.6)	56 (26.5)

^aIncluding extramedullary and bone-based plasmacytomas with measurable soft tissue component. ^bIn 206 (cilta-cel arm) and 208 (SOC arm) patients; maximum value from bone marrow biopsy and bone marrow aspirate selected if both results available. ^cAt least 1 PI, 1 IMiD, and 1 anti-CD38 antibody. ^dAt least 2 PIs, 2 IMiDs, and 1 anti-CD38 antibody. Ig, immunoglobulin, ISS, International Staging System; ITT, intent-to-treat. Postinfusion clinical course and immune recovery in patients who received cilta-cel as study treatment

- Among 176 patients who received cilta-cel as study treatment, 54 (30.7%) had grade ≥3 infections (TE and non-TE), which occurred most often in the first 6 months after infusion
 - Fatal infections (TE and non-TE) occurred in 11 patients who received cilta-cel as study treatment, including the 7 in the safety set who died due to COVID-19
- 89.2% of patients who had grade 3/4 neutropenia recovered to grade ≤2 by day 60 (**Figure 2**)

Figure 2: Absolute neutrophil counts over time

No. evaluable 171 171 172 175 173 173 171 58 65 169 170 163 162 153 126 44

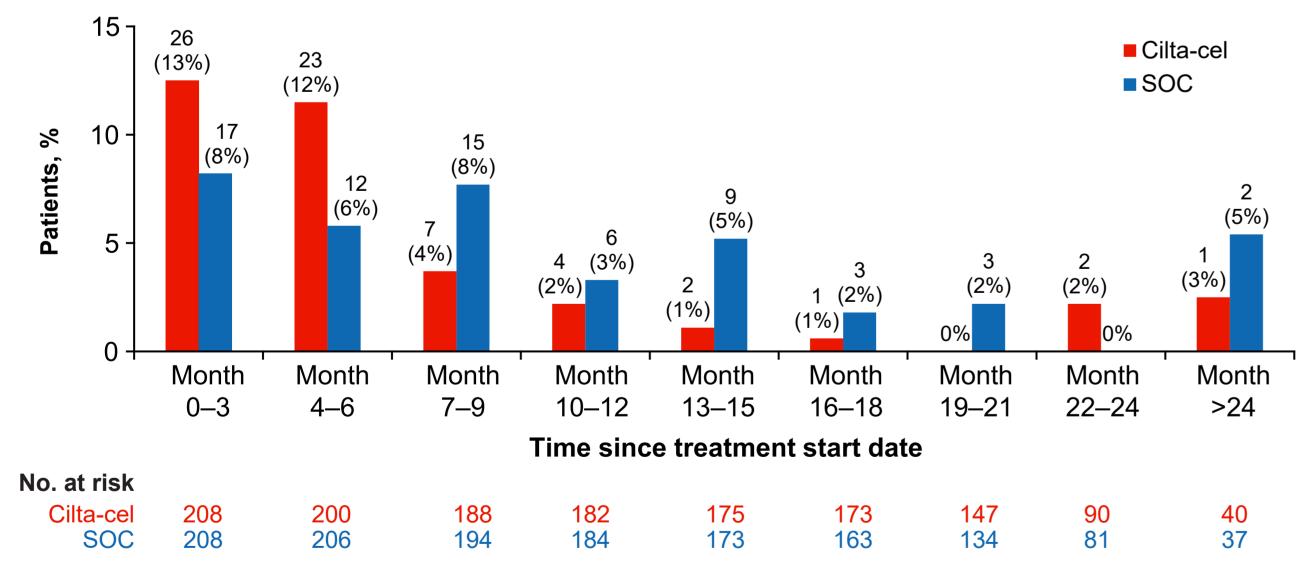
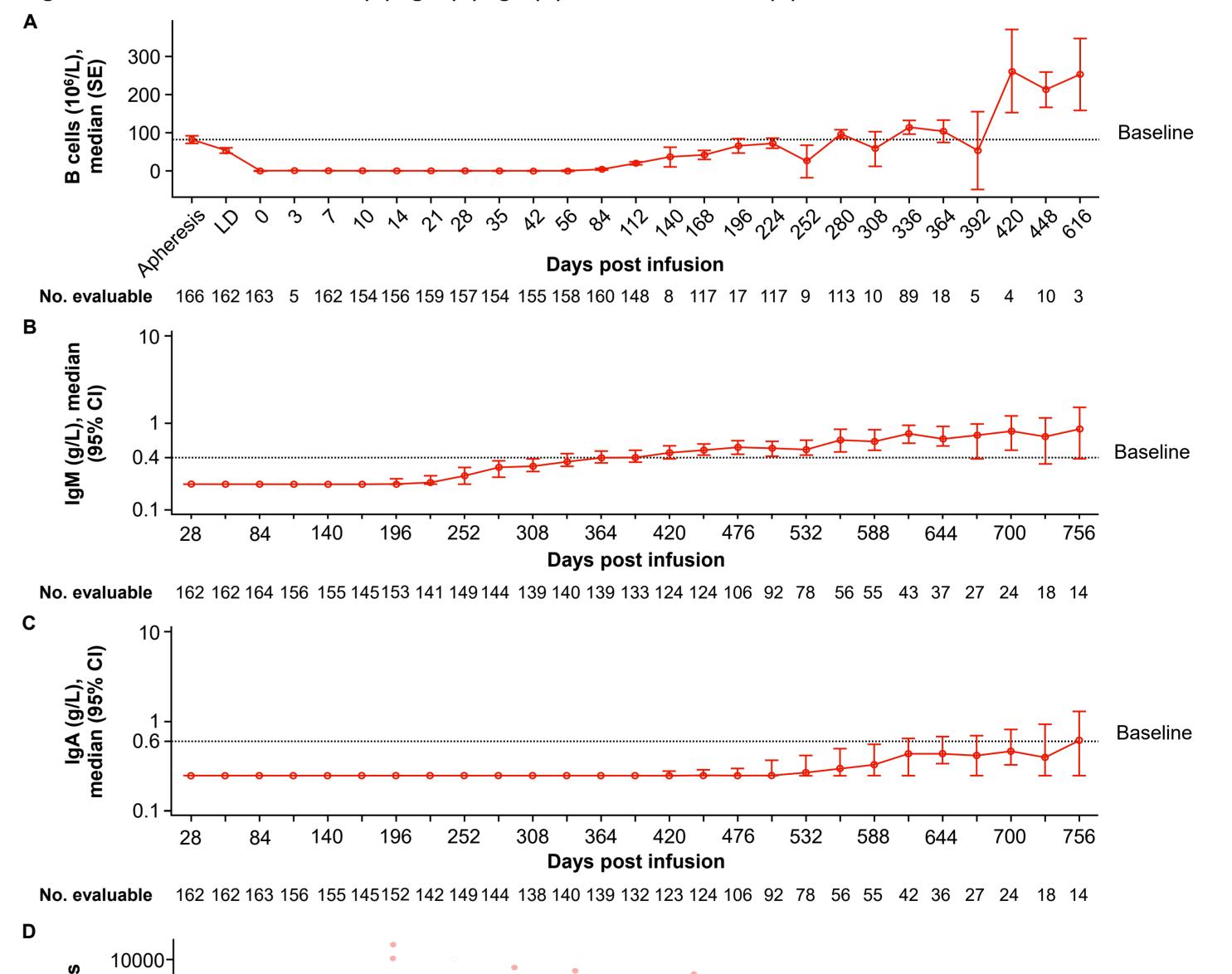

- B-cell counts in blood began to return to baseline levels ~4 months post infusion and reached baseline at ~9 months post infusion (Figure 3A)
- IgM and IgA levels returned to baseline ~1 and 2 years, respectively, after treatment with cilta-cel (Figure 3B, C)
 - Measurement of IgG recovery is confounded by IVIg supplementation; however, it is expected to occur between 1 and 2 years, based on IgM and IgA recovery⁶
- Median CD4+ T median CD4+ T-cell counts began to rise above the lower limit of normal (LLN; 200 × 10⁶/µL) starting day 168 post infusion (Figure 3D)

Figure 3: Blood levels of B cells (A), IgM (B), IgA (C), and CD4+ T cells^a (D) over time


Safety set

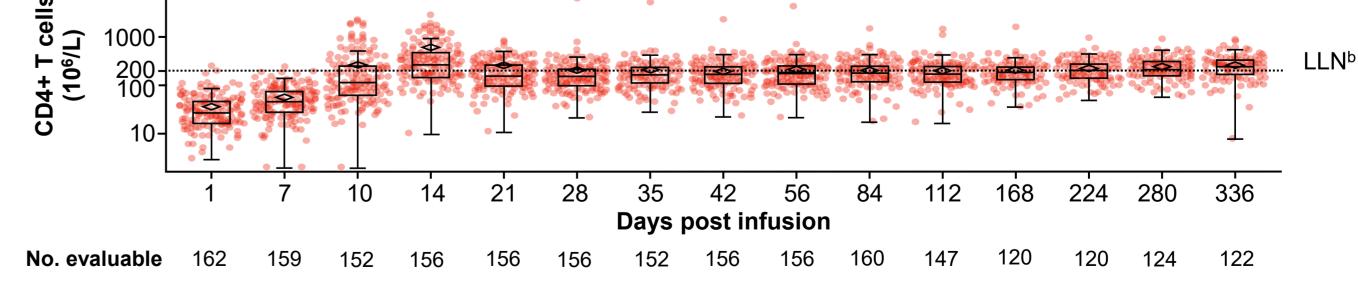
- 208 patients in the cilta-cel arm and 208 in the SOC arm received study treatment
 - 176 patients received cilta-cel as study treatment
 - In the SOC arm, median duration of DPd (n=182) was 12.1 months (range, 0.5–31.3) and for PVd (n=26) was 4.8 months (range, 0.5–25.4)
- 128 (61.5%) patients in the cilta-cel arm and 157 (75.5%) in the SOC arm had TE infections of any grade
 - Viral infections occurred in a respective 29.8% and 43.3%
 - Bacterial infections occurred in 16.8% and 10.6%
 - Fungal infections occurred in 5.8% and 9.6%, and were invasive in 4 (grade 3/4, n=2) and 5 (grade 3/4, n=2) cases, respectively
- Grade ≥3 TE infections occurred in 57 (27.4%) patients in the cilta-cel arm and 56 (26.9%) in the SOC arm
- In the cilta-cel arm, rates were highest in the first 6 months after study treatment start; in the SOC arm, rates were highest in the first 9 months (Figure 1)
- Grade ≥3 events decreased substantially in the cilta-cel arm after month 6; a more gradual decrease over time
 was observed in the SOC arm

Figure 1: Grade ≥3 TE infections

 9 (4.3%) patients in the cilta-cel arm and 6 (2.9%) in the SOC arm had TE fatal infections, most of which occurred in the first 9 months after study treatment start

- 7 fatal infections in the cilta-cel arm and 2 in the SOC arm were due to COVID-19 pneumonia; most of these occurred during the pandemic's omicron wave
 - None of the patients who died of COVID-19 in the cilta-cel arm were fully vaccinated; none of these deaths
 occurred after implementation of protocol-specified COVID-19 mitigation strategies
- 189 (90.9%) patients in the cilta-cel arm and 149 (71.6%) in the SOC arm had either TE hypogammaglobulinemia or postbaseline IgG <500 mg/dL
- A respective 142 (68.3%) and 33 (15.9%) patients received intravenous Ig (IVIg)

KEY TAKEAWAY


• These results underscore the importance of monitoring, infection prophylaxis, and supportive care following cilta-cel infusion and for patients receiving continuous treatment

REFERENCES

1. Raje NS, et al. *Lancet Haematol* 2022;9:e143-61. 2. Cordas dos Santos DM, et al. *Nat Med* 2024;30:2667-78. 3. CARVYKTI[®] (ciltacabtagene autoleucel). Package insert. Horsham, PA: Janssen Biotech, Inc.; 2024. 4. Janssen Biotech, Inc., and Legend Biotech. CARVYKTI[®] (ciltacabtagene autoleucel) Summary of product characteristics. Available from: https://www.ema.europa.eu/en/documents/product-information/carvykti-epar-product-information_en.pdf. 5. San-Miguel J, et al. *N Engl J Med* 2023;389:335-47. 6. Wang Y, et al. *Blood Adv* 2021;5:5290-9.

ACKNOWLEDGMENTS

This study was funded by Johnson & Johnson and Legend Biotech USA Inc. We thank Feng Wang (of Johnson & Johnson, Shanghai, China) for support with translational correlative analyses. Medical writing support was provided by Sandi Wong, PhD, of Eloquent Scientific Solutions, and funded by Johnson & Johnson.

^aBoxes show median and IQR; whiskers indicate first quartile – 1.5×IQR and 1.5×IQR + third quartile; diamonds indicate mean values. ^bLLN=200 × 10⁶/µL. IQR, interquartile range.

CONCLUSIONS

- Patients in both the cilta-cel and SOC arms were at risk of severe and fatal infections; infection risk is multifactorial and contributors include neutropenia, low CD4+ T-cell counts, and low antibody levels
- In both the cilta-cel and SOC arms, most severe and fatal infections occurred early after treatment start, with higher risk in the first few months
- After the first 6 months, grade ≥3 infection rates were generally higher in the SOC arm than the cilta-cel arm
- Timing of immune recovery in patients who received cilta-cel as study treatment corresponds with a reduction in infection risk; however, immune recovery may take longer in some patients, underscoring the importance of tailored infection prophylaxis

https://comylive.cme-congresses.com