

The 11th World Congress on CONTROVERSIES IN MULTIPLE MYELOMA (COMy)

# Linvoseltamab in patients identifying as Black or African American with relapsed/refractory multiple myeloma (RRMM): Results from LINKER-MM1

J. A. Zonder<sup>1</sup>, J. Richter<sup>2</sup>, S. Jagannath<sup>2</sup>, H.C. Lee<sup>3</sup>, A. Suvannasankha<sup>4</sup>, J. E. Hoffman<sup>5</sup>, M.R. Shah<sup>6</sup>, S. Lentzsch<sup>7</sup>, N. Bumma<sup>8</sup>, R. Baz<sup>9</sup>, S. Namburi<sup>10</sup>, K. Wu<sup>11</sup>, J.J. Maly<sup>12</sup>, R. Silbermann<sup>13</sup>, C. Min<sup>14</sup>, M. Pianko<sup>15</sup>, M. Vekemans<sup>16</sup>, M. Munder<sup>17</sup>, J. Byun<sup>18</sup>, J. Martínez-López<sup>19</sup>, M. DeVeaux<sup>20</sup>, D. Chokshi<sup>20</sup>, M. Seraphin<sup>20</sup>, K. Knorr<sup>20</sup>, G. S. Kroog<sup>20</sup>, M. V. Dhodapkar<sup>21</sup>

<sup>1</sup>Karmanos Cancer Institute, Detroit, USA; <sup>2</sup>Icahn School of Medicine at Mount Sinai, New York, USA; <sup>3</sup>The University of Texas MD Anderson Cancer Center, Houston, USA; <sup>4</sup>Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, USA; <sup>5</sup>University of Miami Health System, Miami, USA; <sup>6</sup>Rutgers Cancer Institute of New Jersey, New Brunswick, USA; <sup>7</sup>Columbia University Medical Center, New York, USA; <sup>8</sup>The Ohio State University Comprehensive Cancer Center, Columbus, USA; <sup>9</sup>Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, USA; <sup>10</sup>Swedish Cancer Institute, Seattle, USA; <sup>11</sup>Ziekenhuis Netwerk Antwerpen Stuivenberg, Antwerp, Belgium; <sup>12</sup>Norton Cancer Institute, Louisville, USA; <sup>13</sup>Knight Cancer Institute, Oregon Health & Science University, Portland, USA; <sup>14</sup>Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea; <sup>15</sup>University Medical Center of the Johannes Gutenberg University, Mainz, Germany; <sup>18</sup>Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea; <sup>19</sup>Hospital Universitario 12 de Octubre, Universidad Complutense, CNIO, Madrid, Spain; <sup>20</sup>Regeneron Pharmaceuticals, Inc., Tarrytown, USA; <sup>21</sup>Emory University School of Medicine, Atlanta, USA.

## **INTRODUCTION**

• MM disproportionally affects a variety of patient groups, including Black/AA patients

- In the USA, MM is more than twice as common in Black/AA individuals than people of other races/ethnicities<sup>1,2</sup>
- Real-world studies indicate that overall survival is similar, and potentially improved, in Black/AA versus White patients following the introduction of novel therapies (e.g., PIs, IMiDs)<sup>3–5</sup>
- However, data in Black/AA patients from clinical studies are limited, reflecting the notable underrepresentation of Black/AA individuals in MM trials and highlighting an unmet need for this population<sup>6,7</sup>
- Linvoseltamab, a BCMA×CD3 bispecific antibody, demonstrated high rates of durable response with a generally manageable safety profile in patients with RRMM in the Phase 1/2 LINKER-MM1 study (NCT03761108), including Black/AA patients<sup>8</sup>
- ORR in Black/AA patients was 85.0% with linvoseltamab 200 mg<sup>8</sup>
- Here we report patient and disease characteristics, as well as updated efficacy and safety analyses of linvoseltamab, in Black/AA versus non-Black patients from LINKER-MM1





- An optimized dosing regimen was used that included premedication and step-up dosing to help mitigate the risk of CRS, with 24-hour hospitalization required after each step-up dose<sup>8</sup>
- From Week 3, linvoseltamab was administered weekly for 3 cycles, followed by Q2W dosing in Cycles 4–5; dosing frequency was then
  reduced to Q4W in Cycle 6 and beyond (at Week 24 or later) in patients who achieved ≥VGPR<sup>9</sup>

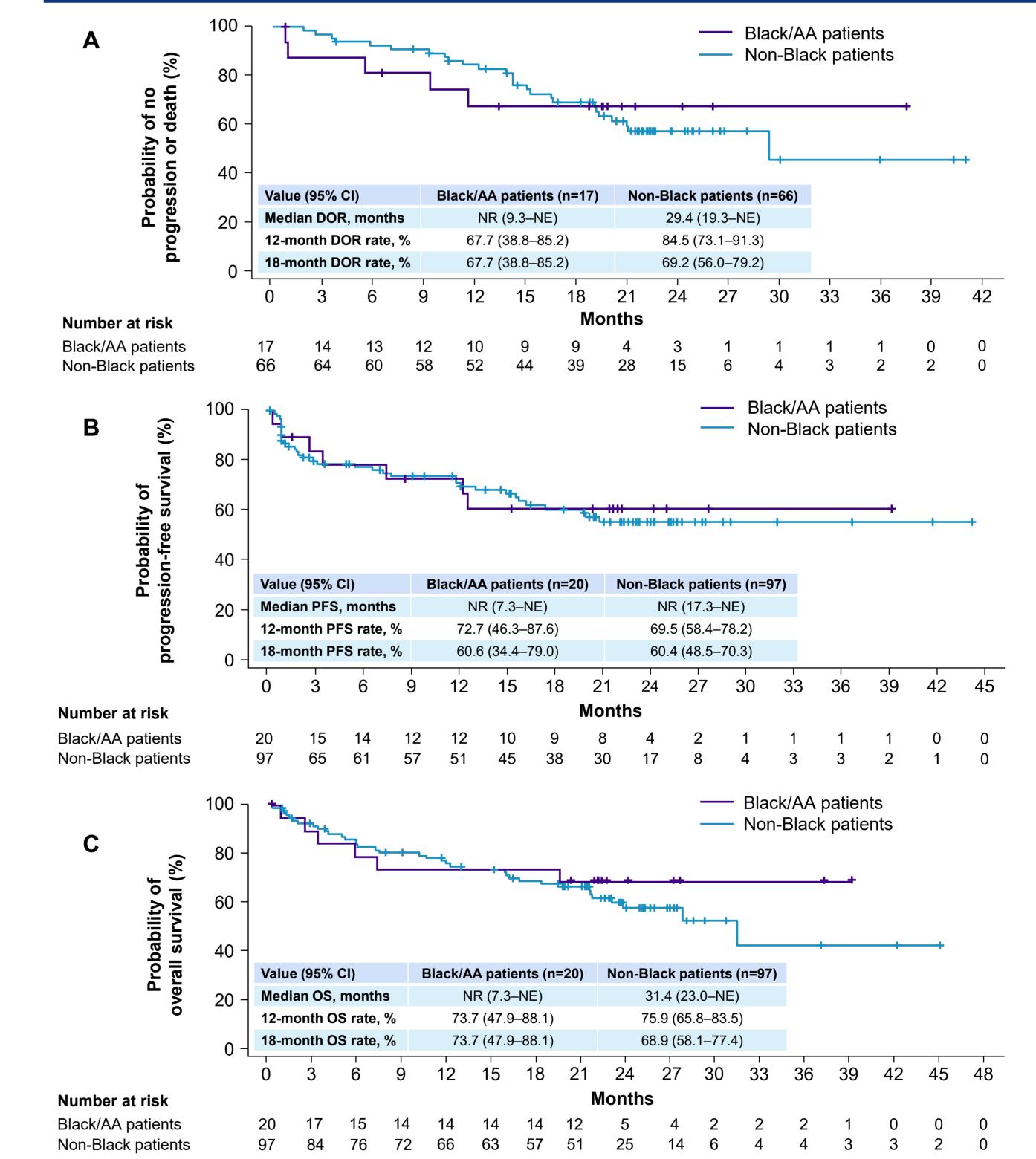
#### Key eligibility criteria for Phase 2:

 ≥3 prior lines of therapy and triple-class–exposed MM; or triple-class–refractory MM Key Phase 2 endpoints:
Primary: ORR by IRC (IMWG criteria)
Secondary: Safety, DOR, PFS, MRD, and OS

#### Table 1. Patient demographics and disease characteristics

|                                                           | Black/AA patients (n=20)       | Non-Black patients (n=97)         |  |
|-----------------------------------------------------------|--------------------------------|-----------------------------------|--|
| Median age (range), years                                 | 67 (44–91)                     | 70 (37–83)                        |  |
| ≥75 years, n (%)                                          | 7 (35.0)                       | 24 (24.7)                         |  |
| Male, n (%)                                               | 7 (35.0)                       | 57 (58.8)                         |  |
| ISS stage, n (%)*                                         |                                |                                   |  |
| 1 / 11 / 111                                              | 8 (40.0) / 8 (40.0) / 4 (20.0) | 41 (42.3) / 33 (34.0) / 17 (17.5) |  |
| ECOG PS, n (%)                                            |                                |                                   |  |
| 0 / 1                                                     | 3 (15.0) / 17 (85.0)           | 29 (29.9) / 68 (70.1)             |  |
| Extramedullary plasmacytomas per IRC, n (%)               | 2 (10.0)                       | 17 (17.5)                         |  |
| High-risk cytogenetics, n (%)                             | 8 (40.0)                       | 38 (39.2)                         |  |
| BMPC percentage, n (%)*                                   |                                |                                   |  |
| >0—<50% / ≥50%                                            | 11 (55.0) / 5 (25.0)           | 55 (56.7) / 23 (23.7)             |  |
| Median leukocyte count (range), 10 <sup>9</sup> /L        | 5.28 (2.9–10.1)                | 5.00 (1.7–9.0)                    |  |
| Median neutrophil count (range), 10 <sup>9</sup> /L       | 2.47 (1.2–6.2)                 | 3.04 (0.7–7.0)                    |  |
| Number of prior treatment lines, median (range)*          | 5.0 (3–13)                     | 5.0 (2–16)                        |  |
| ≥ Triple-class exposed / ≥ Triple-class refractory, n (%) | 20 (100) / 18 (90.0)           | 97 (100) / 78 (80.4)              |  |
| ≥ Quad-class exposed / ≥ Quad-class refractory, n (%)     | 20 (100) / 14 (70.0)           | 92 (94.8) / 64 (66.0)             |  |
| ≥ Penta-class exposed / ≥ Penta-class refractory, n (%)   | 16 (80.0) / 5 (25.0)           | 74 (76.3) / 29 (29.9)             |  |
| Refractory to line of therapy, n (%)                      | 19 (95.0)                      | 82 (84.5)                         |  |

\*ISS stage missing: n=6 (non-Black). BMPC percentage missing: n=4 (Black/AA); n=17 (non-Black). Patients with less than triple-class refractory or with missing data on refractory status: n=2 (Black/AA); n=19 (non-Black).


• The group of Black/AA patients included a greater proportion of females, patients aged ≥75 years, and those with ECOG PS of 1

#### patients with high-risk characteristics at baseline

| Subgroups              | Number of patients<br>in subgroup | ORR (95% CI)      |
|------------------------|-----------------------------------|-------------------|
| All patients           | 117 ·····                         | 70.9 (61.8–79.0   |
| >75 years of aga       | Black/AA 7                        | • 85.7 (42.1–99.6 |
| ≥75 years of age       | Non-Black 24                      | 66.7 (44.7–84.4   |
| ISS Stago III          | Black/AA 4                        | • 75.0 (19.4–99.4 |
| ISS Stage III          | Non-Black 17                      | 58.8 (32.9–81.6   |
| Baseline EMP           | Black/AA 2                        | • 100 (15.8–100)  |
|                        | Non-Black 17                      | 47.1 (23.0–72.2   |
| Ligh rick outogonation | Black/AA 8                        | • 100 (63.1–100)  |
| High-risk cytogenetics | Non-Black 38                      | 60.5 (43.4–76.0   |
|                        | Black/AA 11                       | • 72.7 (39.0–94.0 |
| sBCMA ≥400 ng/mL       | Non-Black 42                      | 52.4 (36.4–68.0   |
|                        | Black/AA 5                        | 60.0 (14.7–94.7   |
| BMPC ≥50%              | Non-Black 23                      | 47.8 (26.8–69.4   |
| Trials refrecters      | Black/AA 4                        | • 100 (39.8–100)  |
| Triple-refractory      | Non-Black 14                      | 64.3 (35.1–87.2   |
| <b>0</b>               | Black/AA 9                        | 66.7 (29.9–92.5   |
| Quad-refractory        | Non-Black 35                      | 71.4 (53.7–85.4   |
|                        | Black/AA 5                        | • 100 (47.8–100)  |
| Penta-refractory       | Non-Black 29                      | 62.1 (42.3–79.3   |
|                        |                                   |                   |
|                        | 0 10 20 30 40 50 60 7<br>ORR (%)  | 70 80 90 100      |

Numerical trends toward improved IRC-assessed ORR were observed in Black/AA versus non-Black patients across most high-risk subgroups
 Response rate was high across non-high-risk subgroups, and numerically greater in Black/AA versus non-Black patients for most subgroups assessed (Suppl. Figure 1)

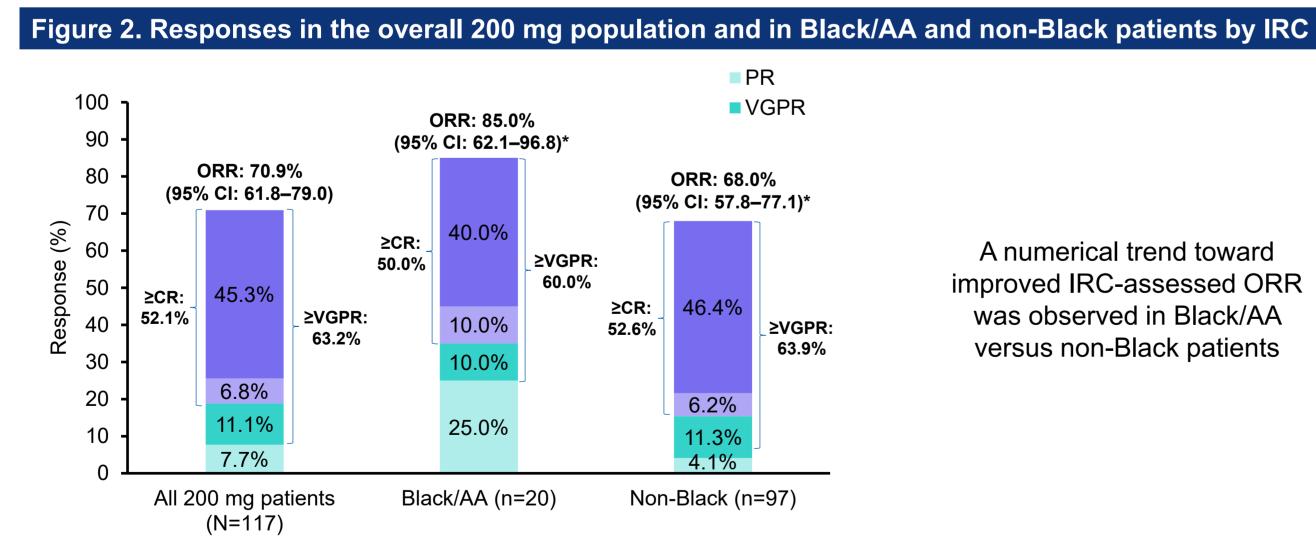
## Figure 4. Duration of response in patients with BOR of ≥PR (A), progression-free survival (B), and overall survival (C) with linvoseltamab 200 mg in Black/AA and non-Black patients



Both the Black/AA and non-Black groups had received a median of five prior lines of therapy

#### Table 2. Safety profile in Black/AA and non-Black patients

| Event, n (%)                                                | Black/AA pa | tients (n=20) | Non-Black patients (n=97) |           |  |  |  |  |
|-------------------------------------------------------------|-------------|---------------|---------------------------|-----------|--|--|--|--|
|                                                             | Any grade   | Grade 3–4     | Any grade                 | Grade 3–4 |  |  |  |  |
| Any TEAE                                                    | 20 (100)    | 17 (85.0)     | 97 (100)                  | 69 (71.1) |  |  |  |  |
| Most common (≥30% in either subgroup) hematologic TEAEs     |             |               |                           |           |  |  |  |  |
| Neutropenia*                                                | 13 (65.0)   | 13 (65.0)     | 38 (39.2)                 | 37 (38.1) |  |  |  |  |
| Anemia*                                                     | 9 (45.0)    | 8 (40.0)      | 38 (39.2)                 | 28 (28.9) |  |  |  |  |
| Most common (≥30% in either subgroup) non-hematologic TEAEs |             |               |                           |           |  |  |  |  |
| CRS                                                         | 5 (25.0)    | 0             | 49 (50.5)                 | 1 (1.0)   |  |  |  |  |
| Diarrhea                                                    | 8 (40.0)    | 1 (5.0)       | 41 (42.3)                 | 1 (1.0)   |  |  |  |  |
| Cough                                                       | 8 (40.0)    | 0             | 39 (40.2)                 | 0         |  |  |  |  |
| Fatigue                                                     | 6 (30.0)    | 0             | 34 (35.1)                 | 1 (1.0)   |  |  |  |  |
| Arthralgia                                                  | 3 (15.0)    | 0             | 35 (36.1)                 | 2 (2.1)   |  |  |  |  |
| Hypokalemia*                                                | 7 (35.0)    | 0             | 22 (22.7)                 | 4 (4.1)   |  |  |  |  |
| Pneumonia                                                   | 6 (30.0)    | 5 (25.0)      | 15 (15.5)                 | 14 (14.4) |  |  |  |  |


\*Composite terms.

• Median linvoseltamab exposure was 53.7 weeks (range 2–170) in Black/AA patients and 53.0 weeks (1–194) in non-Black patients

• ICANS was reported in 1 Black/AA patient (5%; event was Grade [Gr] 2) and in 8 non-Black patients (8.2%; Gr 3–4, 3.1%)

The most common infections in Black/AA patients were pneumonia (any Gr, 30%; Gr ≥3, 25%), URTI (20%; 5%), UTI (20%; 0%), and CMV reactivation (20%; 10%) vs COVID-19 (26%; 11%), URTI (22%; 1%), and pneumonia (15%; 14%) in non-Black patients

TEAEs led to death in 3 Black/AA patients (15.0%) and 14 non-Black patients (14.4%) (Suppl. Table 1)



## <u>CONCLUSIONS</u>



- ORR was numerically higher in Black/AA patients versus non-Black patients
- ORR: 85.0% (95% CI 62.1–96.8) in Black/AA patients; 68.0% (95% CI 57.8–77.1) in non-Black patients
- ≥CR: 50.0% (95% CI 27.2–72.8) in Black/AA patients; 52.6% (95% CI 42.2–62.8) in non-Black patients
- PFS and OS were similar in Black/AA and non-Black patients
- Numerical differences in the rates of some TEAEs were apparent between Black/AA and non-Black patients (e.g., neutropenia and pneumonia were higher in Black/AA patients), but overall toxicity was similar
- These results suggest that linvoseltamab is similarly beneficial among Black/AA and non-Black patients with RRMM

### **ACKNOWLEDGEMENTS**

The authors would like to thank the patients, their families, and all other investigators and site members involved in LINKER-MM1, especially during the challenges of the coronavirus pandemic. This study was funded by Regeneron Pharmaceuticals, Inc.

Previously presented at the 6<sup>th</sup> European Myeloma Network (EMN) Meeting, April 10–12, 2025, Athens, Greece.



AA, African American; ANC, absolute neutrophil count; BCMA, B-cell maturation antigen; BMPC, bone marrow plasma cell; BOR, best overall response; CD, cluster of differentiation; CI, confidence interval; CMV, cytomegalovirus; CR, complete response; CRS, cytokine release syndrome; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EMP, extramedullary plasmacytoma; ICANS, immune effector cell-associated neurotoxicity syndrome; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; IRC, independent review committee; ISS, International Staging System; MM, multiple myeloma; MRD, minimal residual disease; NE, not evaluable; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PI, proteasome inhibitor; PR, partial response; Q2W, once every 2 weeks; Q4W, once every 4 weeks; RRMM, relapsed/refractory multiple myeloma; sBCMA, soluble B-cell maturation antigen; sCR, stringent complete response; TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection; UTI, urinary tract infection; VGPR, very good partial response; W, week.



- National Cancer Institute Surveillance, Epidemiology and End Results Program. Cancer stat facts: myeloma. Available at: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed Apr 29, 2025).
- 2. Landgren O, et al. Leukemia 2009;23(10):1691-7.
- 3. Maignan K, et al. *Blood Cancer* J 2022;12:65.
- 4. Filmore NR, et al. *Blood* 2019;133(24):2615-8.
- 5. National Cancer Institute. SEER\*Explorer: an interactive website for SEER Cancer Statistics [internet]. Surveillance Research Program. https://seer.cancer.gov/explorer/ (accessed Apr 29, 2025).
- 6. Banerjee R, et al. *Blood Cancer J* 2024;14:149.
- 7. Marinac CR, et al. *Blood Cancer J* 2020;10:19.
- 8. Bumma N, et al. J Clin Oncol 2024;42:2702–12.

# https://comylive.cme-congresses.com



# The 11th World Congress on CONTROVERSIES IN MULTIPLE MYELOMA (COMy)

# Linvoseltamab in patients identifying as Black or African American with relapsed/refractory multiple myeloma (RRMM): Results from LINKER-MM1

J. A. Zonder<sup>1</sup>, J. Richter<sup>2</sup>, S. Jagannath<sup>2</sup>, H.C. Lee<sup>3</sup>, A. Suvannasankha<sup>4</sup>, J. E. Hoffman<sup>5</sup>, M.R. Shah<sup>6</sup>, S. Lentzsch<sup>7</sup>, N. Bumma<sup>8</sup>, R. Baz<sup>9</sup>, S. Namburi<sup>10</sup>, K. Wu<sup>11</sup>, J.J. Maly<sup>12</sup>, R. Silbermann<sup>13</sup>, C. Min<sup>14</sup>, M. Pianko<sup>15</sup>, M. Vekemans<sup>16</sup>, M. Munder<sup>17</sup>, J. Byun<sup>18</sup>, J. Martínez-López<sup>19</sup>, M. DeVeaux<sup>20</sup>, D. Chokshi<sup>20</sup>, M. Seraphin<sup>20</sup>, K. Knorr<sup>20</sup>, G. S. Kroog<sup>20</sup>, M. V. Dhodapkar<sup>21</sup>

<sup>1</sup>Karmanos Cancer Institute, Detroit, USA; <sup>2</sup>Icahn School of Medicine at Mount Sinai, New York, USA; <sup>3</sup>The University of Texas MD Anderson Cancer Center, Houston, USA; <sup>4</sup>Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, USA; <sup>5</sup>University of Miami Health System, Miami, USA; <sup>6</sup>Rutgers Cancer Institute of New Jersey, New Brunswick, USA; <sup>7</sup>Columbia University Medical Center, New York, USA; <sup>8</sup>The Ohio State University Comprehensive Cancer Center, Columbus, USA; <sup>9</sup>Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, USA; <sup>10</sup>Swedish Cancer Institute, Seattle, USA; <sup>11</sup>Ziekenhuis Netwerk Antwerpen Stuivenberg, Antwerp, Belgium; <sup>12</sup>Norton Cancer Institute, Louisville, USA; <sup>13</sup>Knight Cancer Institute, Oregon Health & Science University, Portland, USA; <sup>14</sup>Department of Hematology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea; <sup>15</sup>University Medical Center of the Johannes Gutenberg University, Mainz, Germany; <sup>18</sup>Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea; <sup>19</sup>Hospital Universitario 12 de Octubre, Universidad Complutense, CNIO, Madrid, Spain; <sup>20</sup>Regeneron Pharmaceuticals, Inc., Tarrytown, USA; <sup>21</sup>Emory University School of Medicine, Atlanta, USA.

## **SUPPLEMENTAL DATA**

### Suppl. Table 1. TEAE overview in Black/AA and non-Black patients

| n (%)                  | Black/AA patients (n=20) | Non-Black patients (n=97) |
|------------------------|--------------------------|---------------------------|
| Patients with any TEAE | 20 (100)                 | 97 (100)                  |

| Patients with any Grade ≥3 TEAE                           | 20 (100)  | 83 (85.6) |
|-----------------------------------------------------------|-----------|-----------|
| Patients with any serious TEAE                            | 17 (85.0) | 74 (76.3) |
| Patients who discontinued treatment due to TEAEs          | 5 (25.0)  | 19 (19.6) |
| Patients with any TEAE leading to dose interruption/delay | 17 (85.0) | 73 (75.3) |
| Patients with any TEAE leading to dose reduction          | 1 (5.0)   | 20 (20.6) |
| Patients with any TEAE resulting in death                 | 3 (15.0)  | 14 (14.4) |

#### TEAEs leading to death:

- Black/AA patients: respiratory failure (n=1); chronic kidney disease (n=1); septic shock (n=1)
- Non-Black patients: COVID-19 (n=3); PJP (n=1); progressive multifocal leukoencephalopathy (n=2); encephalopathy (n=1); influenzal pneumonia (n=1); pseudomonal sepsis (n=1); pancreatic adenocarcinoma (n=1); *Escherichia* sepsis (n=1); *Hemophilus* sepsis (n=1); infection (n=1); septic shock (n=1)

### Suppl. Figure 1. ORR (BOR of ≥PR by IRC) in the overall 200 mg population, and across Black/AA and non-Black patients with non-high-risk characteristics at baseline

| Subaroups                  | Numbe<br>in s | er of patients<br>subgroup |   |    |          |             |          |     | ORR (95% CI)     |
|----------------------------|---------------|----------------------------|---|----|----------|-------------|----------|-----|------------------|
| All patients               |               | 117                        |   |    |          | ·           | <b>-</b> |     | 70.9 (61.8–79.0) |
|                            | Black/AA      | 9                          |   |    |          |             | •        |     | 88.9 (51.8–99.7) |
| <65 years of age           | Non-Black     | 35                         |   |    | I        | •           |          |     | 60.0 (42.1–76.1) |
| SE 275 years of aga        | Black/AA      | 4                          |   | ·  |          |             | •        |     | 75.0 (19.4–99.4) |
| ≥65–<75 years of age       | Non-Black     | 38                         |   |    |          | ·           | •        |     | 76.3 (59.8–88.6) |
| ISS Stage I                | Black/AA      | 8                          |   |    |          |             |          | •   | 100 (63.1–100)   |
|                            | Non-Black     | 41                         |   |    |          | ·           | •        |     | 68.3 (51.9–81.9) |
| ISS Stage II               | Black/AA      | 8                          |   |    | <b></b>  |             | •        |     | 75.0 (34.9–96.8) |
|                            | Non-Black     | 33                         |   |    |          | L           | •        |     | 69.7 (51.3-84.4) |
|                            | Black/AA      | 18                         |   |    |          |             | •        |     | 83.3 (58.6–96.4) |
| Without baseline EMP       | Non-Black     | 80                         |   |    |          | <b></b>     | •        |     | 72.5 (61.4–81.9) |
|                            | Black/AA      | 12                         |   |    |          |             | •        |     | 75.0 (42.8–94.5) |
| Standard-risk cytogenetics | Non-Black     | 59                         |   |    |          | ·           |          |     | 72.9 (59.7–83.6) |
|                            | Black/AA      | 9                          |   |    |          |             |          |     | 100 (66.4–100)   |
| sBCMA <400 ng/mL           | Non-Black     | 50                         |   |    |          | <u> </u>    | •        | 4   | 80.0 (66.3–90.0) |
|                            | Black/AA      | 11                         |   |    |          |             |          | •   | 90.9 (58.7–99.8) |
| BMPC >0-<50%               | Non-Black     | 55                         |   |    |          | H           |          |     | 76.4 (63.0-86.8) |
| Less than triple-class     | Black/AA      | 2                          |   |    |          |             |          |     | 100 (15.8–100)   |
| refractory or missing      | Non-Black     | 19                         |   |    |          | <b>I</b>    | •        |     | 73.7 (48.8–90.9) |
|                            |               |                            | 0 | 20 | 40<br>OR | 60<br>R (%) | 80       | 100 |                  |

## **ABBREVIATIONS**

AA, African American; BOR, best overall response; BMPC, bone marrow plasma cell; CI, confidence interval; EMP, extramedullary plasmacytoma; IRC, independent review committee; ISS, International Staging System; PJP, *Pneumocystis jirovecci* pneumonia; PR, partial response; ORR, overall response rate; sBCMA, soluble B-cell maturation antigen; TEAE, treatment-emergent adverse event.

## **REFERENCES**

1. National Cancer Institute Surveillance, Epidemiology and End Results Program. Cancer stat facts: myeloma. Available at: https://seer.cancer.gov/statfacts/html/mulmy.html (accessed Apr 29, 2025).

2. Landgren O, et al. *Leukemia* 2009;23(10):1691–7.

3. Maignan K, et al. *Blood Cancer* J 2022;12:65.

4. Filmore NR, et al. *Blood* 2019;133(24):2615–8.

5. National Cancer Institute. SEER\*Explorer: an interactive website for SEER Cancer Statistics [internet]. Surveillance Research Program. https://seer.cancer.gov/explorer/ (accessed Apr 29, 2025).

6. Banerjee R, et al. *Blood Cancer J* 2024;14:149.

7. Marinac CR, et al. *Blood Cancer J* 2020;10:19.

8. Bumma N, et al. *J Clin Oncol* 2024;42:2702–12.

## **DISCLOSURES**

JZ: Spouse employed by Bristol Myers Squibb (BMS); consultancy for Regeneron Pharmaceuticals, Inc.; research funding from BMS, Janssen, and RLL. JR: Consultancy and speakers bureau for BMS, Johnson & Johnson – Janssen, and Sanofi; consultancy for AbbVie, Genentech, Karyopharm Therapeutics, Prizer, Regeneron Pharmaceuticals, Inc., and Takeda; speakers bureau for Adaptive Biotechnologies. **3J**: Consultancy for BMS, Caribou, Graii, Janssen, Legend Biotech, Posieda Therapeutics, Regeneron Pharmaceuticals, Inc., Sanofi, and Takeda; membership on an entity's board of directors or advisory committees for IMS and SOHO Global Health. **JEH**: Stock and other ownership interests in Syndax. **MS**: Honoraria and research funding from Janssen; consultancy and research funding from BMS; consultancy for Targeted Oncology. **SL**: Consultancy for Alexion; honoraria, membership on an entity's board of directors or advisory committees and speakers bureau for Amgen; honoraria, membership on an entity's board of directors or advisory committees, and speakers bureau for Amgen; honoraria, membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, and speakers bureau for Amgen; honoraria, membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees, Inc.; membership on an entity's board of directors or advisory committees on BMS, Genentech, GSK, Janssen, and Pfizer, Regeneron Pharmaceuticals, Inc.; esearch funding from Janssen. **SN:** Honoraria from BMS; consultancy for Pfizer, Nonoraria from GSK, and Sanofi, consultancy for Janssen, Karyopharm Therapeutics, Oncopeptides, Pfizer, a

Data cut-off date: 23 July 2024

Previously presented at the 6<sup>th</sup> European Myeloma Network (EMN) Meeting, April 10–12, 2025, Athens, Greece.

# https://comylive.cme-congresses.com